Máy in 3D

| Tin sản phẩm
1332
Máy in 3D

Công nghệ in 3D đang ngày càng phát triển và trở nên quan trọng trong nhiều lĩnh vực đời sống như: công nghiệp sản xuất, chế tạo, y khoa, kiến trúc, xây dựng,…. Bởi in 3D sẽ giúp cho việc chế tạo mẫu nhanh chóng và chính xác hơn. Đồng thời, sử dụng in 3D sẽ giúp doanh nghiệp có lợi thế về chi phí sản xuất, cải tiến quy trình và sản phẩm cho các nhà cung cấp trong vài trường hợp cụ thể. Để có thể hiểu hơn về in 3D, hãy cùng 3DS tham khảo ngay dưới bài viết này.

Nhiều công ty đã theo đuổi và nắm bắt công nghệ in 3D. Một số khác thì có kế hoạch giới thiệu và tiến tới thay thế cho công nghệ sản xuất gia công truyền thống. Thực tế là, một nghiên cứu gần đây chỉ ra rằng, hơn 70% doanh nghiệp sản xuất đã đang tiếp cận với công nghệ in 3D. Hơn nữa, hơn 50% kỳ vọng rằng công nghệ 3D sẽ góp phần quan trọng trong việc phát triển sản phẩm quy mô lớn, và khoảng 22% khác ước tính rằng tác động của nó đối với chuỗi cung ứng sẽ còn trở nên đột phá hơn. Một số các đơn vị đi đầu trên thế giới trong việc cung cấp máy in 3d trên toàn cầu có thể kể đến: 3DSystems, Stratasys, Formlabs, EOS …..

Năm 2014, ngành in 3D đã tạo ra doanh thu toàn cầu khoảng 4 tỷ đô la. Trong năm 2016, hơn 275.000 máy in 3D đã được bán trên toàn thế giới theo báo cáo hàng năm của Wohler. Tăng trưởng dự kiến ​​cho thấy in 3D sẽ tạo ra doanh thu bùng nổ hơn 21 tỷ đô la trên toàn cầu, và ước tính mức tăng trưởng hằng năm là 31%

1. Công nghệ in 3D là gì

Công nghệ in 3D là phương pháp sản xuất bồi đắp dựa trên thiết kế 3D của sản phẩm. Thiết kế 3D sẽ được chuyển đổi dữ liệu thành dữ liệu điều khiển (Gcode) bằng phần mềm cắt lớp (Slicer). Từ đó, dữ liệu điều khiển sẽ được nạp vào máy in 3D để thực hiện tạo hình sản phẩm với độ chính xác cao và chi tiết dựa theo dữ liệu thiết kế ban đầu. Hiện nay, người dùng có thể lựa chọn nhiều phương pháp in 3d khác nhau như: công nghệ in 3d SLAcông nghệ in 3d FDMcông nghệ in 3d SLS, DMLS, công nghệ LFS.

Các sản phẩm của công nghệ in 3D rất đa dạng, có thể tạo được những hình khối từ đơn giản cho đến phức tạp. Để có thể hiểu rõ về in 3D so với in 2D và cắt gọt vật liệu thì có thể nói: in 3D là việc xếp chồng vật liệu kết dính theo thứ tự, dựa trên mô hình thiết kế 3D, cùng với sự quản lý, giám sát của máy tính và robot. Còn kỹ thuật in 2D là sử dụng mực in phun, ép lên bề mặt phẳng của vật liệu. Trong khi đó, việc cắt gọt không phải in, nó được coi là quá trình gia công vật liệu, giúp loại bỏ phần không cần thiết của vật liệu để tạo ra sản phẩm

2. Sử dụng công nghệ in 3D mang lại lợi ích gì?
 

  • Tốc độ sản xuất
  • Dễ dàng tiếp cận & ứng dụng
  • Chất lượng mẫu thử
  • Tiết kiệm chi phí
  • Thiết kế sáng tạo và tự do tùy biến
  • Hạn chế rác thải

3. Các công nghệ in 3D:

  • Vat Polymerization là một quá trình sử dụng resin dạng lỏng để tạo thành vật thể. Trong đó mô hình được xây dựng theo từng lớp. Khi vật liệu nhựa tiếp xúc với ánh sáng tia cực tím UV (polymer hóa nhựa), nó sẽ đóng rắn hoặc làm cứng nhựa. Đồng thời, bàn in sẽ di chuyển vật thể đang được tạo ra sau khi mỗi lớp in mới được đóng rắn.
  • Powder Bed Fusion (PBF) là quá trình gia công bồi đắp vật liệu dạng bột. Các công nghệ thường thấy: laser thiêu kết kim loại trực tiếp (DMLS). Làm nóng chảy chùm tia điện tử (EBM), thiêu kết nhiệt có chọn lọc (SHS). Nung chảy laser có chọn lọc (SLM) và thiêu kết laser chọn lọc (SLS)
  • Material Extrusion là công nghệ đùn vật liệu. Vật liệu sẽ được đùn thông qua đầu phun. Loại Material Extrusion hoạt động tương tự như tất cả các quy trình in 3D khác. Bởi nó xây dựng từng lớp một, chỉ khác ở chỗ vật liệu được thêm vào thông qua một vòi phun dưới áp suất không đổi và trong một dòng liên tục. Đồng thời, áp suất này phải giữ ổn định và ở tốc độ không đổi để cho kết quả chính xác
  • Material jetting (hay còn gọi là phun vật liệu) là một quy trình in 3D hoạt động theo cách tương tự như máy in 2D. Trong phụ vật liệu, một đầu in phân phối các giọt vật liệu cảm quang đông đặc dưới ánh sáng cực tím (UV), xây dựng từng lớp một. Thông thường, loại vật liệu sử dụng trong Material Jetting là photopolymer hoặc các giọt sáp hóa cứng khi tiếp xúc với ánh sáng UV.

  • Binder Jetting là một quy trình in 3D tương tự như SLS là có các lớp được trải liên tục trên vật liệu in. Như khác với SLS là Binder Jetting sử dụng chất keo để dính bột thay vì dùng nhiệt từ tia laser. Hơn thế nữa, chất lỏng được phun dưới dạng các giọt keo có đường kính thường 80 micromet, có sự liên kết các hạt bột lại với nhau để tạo ra từng lớp bồi đắp cho vật thể.

  • Direct Energy Deposition thì sử dụng một vòi cấp liệu để đưa bột trực tiếp vào chùm tia laser. Từ đó, vật liệu nóng chảy và bồi đắp trực lên vị trí cần in. Nó tương tự như công nghệ FDM vì vòi phun di chuyển để nung chảy và bồi đắp cho vật liệu.

  • Sheet Lamination là một quy trình cán tấm bao gồm sản xuất phụ gia siêu âm (UAM) và sản xuất vật thể nhiều lớp (LOM). Quy trình sản xuất phụ gia siêu âm sử dụng các tấm hoặc dải kim loại, được liên kết với nhau bằng cách sử dụng hàn siêu âm. Quá trình này yêu cầu gia công CNC bổ sung và loại bỏ kim loại không liên kết, thường là trong quá trình hàn. Sản xuất vật thể nhiều lớp (LOM) sử dụng phương pháp tiếp cận từng lớp tương tự nhưng sử dụng giấy làm vật liệu và chất kết dính thay vì hàn.


4. Quy trình in 3D:

  • Tạo dựng mô hình CAD (CAD Model Creation): Đầu tiên, đối tượng sẽ được mô hình hóa bằng cách dùng các phần mềm như: Solidworks, ProE,… Từ đó, người thiết kế có thể dùng một tập tin CAD có từ trước hoặc tạo mới theo mục đích tạo mẫu. Quá trình tạo dựng mô hình 3D này tương tự như các loại kỹ thuật RP.
  • Chuyển đổi CAD sang định dạng STL: Với những phần mềm in 3D khác nhau sẽ có các thuật toán khác nhau để thể hiện ở trên vật thể rắn. Tuy nhiên để thiết lập tính thống nhất với định dạng STL (stereolithography) được áp dụng như tiêu chuẩn dành cho ngành công nghiệp tạo vật mẫu nhanh.
  • Loại định dạng này là quỹ tích của các mặt tam giác phẳng lắp ráp liên tục với nhau. Thể hiện bề mặt của vật thể không gian ba chiều. Bởi định dạng STL sử dụng các yếu tố mặt phẳng nên nó không thể hiện bề mặt cong một cách chính xác.
  • Do đó, chúng ta sẽ tăng số lượng tam giác để cải thiện độ mịn trên bề mặt cong nhưng file sẽ có dung lượng nặng. Đối với các chi tiết lớn, phức tạp sẽ mất nhiều thời gian cho khâu tiền xử lý và xây dựng định dạng STL.  Vì thế, người thiết kế phải cân nhắc kỹ lưỡng yếu tố thời gian, dung lượng file và độ chính xác ở bước này.
  • Cắt file STL thành những tiết diện theo thứ tự trên trục Z: Ở bước này sẽ là một chương trình tiền xử lý file STL được xây dựng. Với một số chương trình có sẵn sẽ cho phép người dùng điều chỉnh kích thước, vị trí và hướng đặt để mô hình.


Bình luận